If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-34y+120=0
a = 2; b = -34; c = +120;
Δ = b2-4ac
Δ = -342-4·2·120
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-14}{2*2}=\frac{20}{4} =5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+14}{2*2}=\frac{48}{4} =12 $
| 9(m+5)=15 | | ((2x-7)/6)+3=27 | | 3c^2+10c-5=0 | | 9(7x–2)–10=36 | | 5(3x–1)+3=13 | | 3c2+5c-4=0 | | |-7x-8|=1 | | X=7+(5r) | | 3c^2+5c-4=0 | | 4*c=64 | | 3x÷5x+2=4÷1 | | -16x^2+89x+6=0 | | -16x^2-89x+6=0 | | (6x-6)/(x)*(9x^2/8x-8)=0 | | ((6x-6)/(x))*((9x^2/8x-8))=0 | | 4+x+17=45-5 | | 7x^2+13-2=0 | | 2=6+2(x+5) | | 7-2p-9=10 | | 2(3k-5)=20 | | 10=4x-10+x | | (3v-7)(3v-7)=0 | | (x+8)^2=-81 | | y/4+12=-8 | | -6w-12=51 | | 8x+12+4x+8=9x-11 | | (8x/x-6)-(48/x-6)=0 | | 19-7x=5/3x+6 | | -5x=1-2(x | | X/3-25=3x-21 | | 4p+3/7=5p+3/7 | | 45=3+z |